Add like
Add dislike
Add to saved papers

Human Umbilical Cord Mesenchymal Stem Cell-Derived Extracellular Vesicles Carrying MicroRNA-29a Improves Ovarian Function of Mice with Primary Ovarian Insufficiency by Targeting HMG-Box Transcription Factor/Wnt/ β -Catenin Signaling.

Background: Primary ovarian insufficiency (POI) is a female disease characterized by ovarian function loss under 40 years old. Transplantation of exosomes is an encouraging regenerative medicine method that has the potential for restoring ovarian functions post-POI with high efficiency. Therefore, we investigate the therapeutic efficacy and potential mechanisms of human umbilical cord mesenchymal stem cell- (UCMSC-) derived exosomes on ovarian dysfunction post-POI.

Methods: The model of POI was established by intraperitoneal injection with 5 mg/kg cisplatin. The mouse ovarian function was detected by measuring the levels of anti-Mullerian hormone, follicle-stimulating hormone, and estradiol and detecting the morphological changes. For in vitro experiments, the characterization and identification of UCMSCs and UCMSC-derived exosomes were done by observation of morphologies and flow cytometry. To exclude the interference effect of nonspecific precipitation substances, UCMSCs were treated with RNase A or RNase A in combination with Triton X-100. Granulosa cell (GC) identification was performed using immunofluorescence. GC proliferation and viability were assessed using 5-ethynyl-2'-deoxyuridine (EdU) assays and Cell Counting Kit-8 (CCK-8), and GC apoptosis was calculated by flow cytometry. Gene expression and protein levels were evaluated using reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blotting. The binding relationship between miR-29a and HMG-box transcription factor (HBP1) was verified by luciferase reporter assays.

Results: In vitro, the human UCMSC-derived exosomes carrying miR-29a upregulation promoted the proliferation of GCs and suppressed their apoptosis. In vivo, miR-29a upregulation reserved the mature follicles and restored the ovarian functions. miR-29a targeted HBP1 and negatively regulated its expression. HBP1 upregulation rescued the miR-29a upregulation-induced inhibition in GC apoptosis and inactivated the Wnt/ β -catenin pathway.

Conclusion: The exosomal miR-29a derived from human UCMSCs improves the ovarian function by targeting HBP1 and activating the Wnt/ β -catenin pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app