Add like
Add dislike
Add to saved papers

The Impact of Burr Hole Device and Lead Design on Deep Brain Stimulation Lead Stability in Benchtop and Ovine Models.

BACKGROUND AND OBJECTIVES: A market-released deep brain stimulation (DBS) lead and burr hole device (BHD) have been used for more than ten years to provide stable DBS therapy using leads with four equally distributed cylindrical electrodes along the distal lead length. Newer directional leads cluster segmented electrodes at the center of the electrode array. This work tests the hypothesis that improved chronic translational and rotational stability through enhanced BHD design may ensure that these newer directional electrodes remain in a stable orientation near the stimulation target to maintain therapy and maximize opportunities to adjust therapy, if needed.

MATERIALS AND METHODS: A new DBS lead system (commercially available in the United States and termed "new" throughout the manuscript) has been developed, and a combination of bench testing (45 product samples tested) and chronic sheep studies (17 animals followed for 13.5 weeks on average) was conducted to test the hypothesis that design changes incorporated into the new DBS system further stabilize the position and orientation of a DBS lead tip compared with a legacy DBS system.

RESULTS: The new DBS system demonstrated a 55% relative improvement in chronic lead tip stability compared with the legacy DBS system with over a decade of clinical use. In a bench test, the new system required 79% more applied torque and 203% more lead body revolutions to rotate the lead in the BHD than the legacy system that was not designed to offer rotational stability.

CONCLUSIONS: These measurements quantitatively demonstrate that DBS system design can positively improve lead translational and rotational stability and show that system design is an important consideration for future product development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app