Add like
Add dislike
Add to saved papers

Application of an Improved Gas-constrained Source Apportionment Method Using Data Fused Fields: a Case Study in North Carolina, USA.

A number of studies have found differing associations of disease outcomes with PM2.5 components (or species) and sources (e.g., biomass burning, diesel vehicles and gasoline vehicles). Here, a unique method of fusing daily chemical transport model (Community Multiscale Air Quality Modeling) results with observations has been utilized to generate spatiotemporal fields of the concentrations of major gaseous pollutants (CO, NO2 , NOx , O3 , and SO2 ), total PM2.5 mass, and speciated PM2.5 (including crustal elements) over North Carolina for 2002-2010. The fused results are then used in chemical mass balance source apportionment model, CMBGC-Iteration, which uses both gas constraint and particulate matter concentrations to quantify source impacts. The method, as applied to North Carolina, quantifies the impacts of ten source categories and provides estimates of source contributions to PM2.5 concentrations. The ten source categories include both primary sources (diesel vehicles, gasoline vehicles, dust, biomass burning, coal-fired power plants and sea salt) and secondary components (ammonium sulfate, ammonium bisulfate, ammonium nitrate and secondary organic carbon). The results show a steady decrease in anthropogenic source impacts, especially from diesel vehicles and coal-fired power plants. Secondary pollutant components accounted for approximately 70% of PM2.5 mass. This study demonstrates an ability to provide spatiotemporal fields of both PM components and source impacts using a chemical transport model fused with observation data, linked to a receptor-based source apportionment method, to develop spatiotemporal fields of multiple pollutants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app