Add like
Add dislike
Add to saved papers

β-arrestin 2 and Epac2 cooperatively mediate DRD1-stimulated proliferation of human neural stem cells and growth of human cerebral organoids.

Stem Cells 2022 June 31
G protein coupled receptors (GPCRs) reportedly relay specific signals, such as dopamine and serotonin, to regulate neurogenic processes though the underlying signaling pathways are not fully elucidated. Based on our previous work which demonstrated Dopamine receptor D1 (DRD1) effectively induces the proliferation of human neural stem cells, here we continued to show the knockout of β-arrestin 2 by CRISPR/Cas9 technology significantly weakened the DRD1-induced proliferation and neurosphere growth. Furthermore, inhibition of the downstream p38 MAPK by its specific inhibitors or small hairpin RNA mimicked the weakening effect of β-arrestin 2 knockout. In addition, blocking of Epac2, a PKA independent signal pathway, by its specific inhibitors or small hairpin RNA also significantly reduced DRD1-induced effects. Simultaneous inhibition of β-arrestin 2/p38 MAPK and Epac2 pathways nearly abolished the DRD1-stimulated neurogenesis, indicating the cooperative contribution of both pathways. Consistently, the expansion and folding of human cerebral organoids as stimulated by DRD1 were also mediated cooperatively by both β-arrestin 2/p38 MAPK and Epac2 pathways. Taken together, our results reveal that GPCRs apply at least two different signal pathways to regulate neurogenic processes in a delicate and balanced manners.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app