Add like
Add dislike
Add to saved papers

Association between elastography-assessed muscle mechanical properties and high-speed dynamic performance.

Clarifying the muscular factors that contribute to performance improvement can be beneficial for athletes and coaches. The present study examined the relationships between the resting muscle shear modulus and dynamic performance during the stretch-shortening cycle (SSC) and explosive exercises. To this end, we measured the jump height during three types of vertical jumps (squat jump [SJ], countermovement jump [CMJ], and rebound jump [RJ]) and the multi-joint leg extension power at three velocities (low, moderate, and high) of 30 healthy women. Using ultrasound elastography, the resting shear modulus of the vastus lateralis was assessed in the sitting position as an index of passive muscle mechanical properties. The results showed that the shear modulus was positively correlated with RJ height and multi-joint leg extension power at moderate and high velocities (r = 0.435-0.563, P  < 0.05). There was no significant correlation between the shear modulus and SJ height, CMJ height, and multi-joint leg extension power at low velocity. Contact time (i.e. the time under force exertion against the ground) during RJ (161 ± 19 ms) was 19% of that during CMJ (869 ± 171 ms). The results suggest that passive muscle mechanical properties play an important role in high-speed SSCs and dynamic explosive performance. Highlights The resting shear modulus was related to performance in stretch-shortening cycle (SSC) exercise involving a series of rapidly performed SSCs . The resting shear modulus was associated with muscular power in high-velocity conditions but not in low-velocity conditions.This study suggests that the passive mechanical properties of an agonist muscle play an important role in high-speed dynamic performance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app