Add like
Add dislike
Add to saved papers

Intercellular adhesion molecule-1-targeted near-infrared photoimmunotherapy of triple-negative breast cancer.

Cancer Science 2022 September
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, and conventional chemotherapy and molecular-targeted therapies show limited efficacy. Near-infrared photoimmunotherapy (NIR-PIT) is a new anticancer treatment that selectively damages the cell membrane of cancer cells based on NIR light-induced photochemical reactions of the antibody (Ab)-photoabsorber (IRDye700Dx) conjugate and the cell membrane. TNBC is known to express several adhesion molecules on the cell surface providing a potential new target for therapy. Here, we investigated the therapeutic efficacy of intercellular adhesion molecule-1 (ICAM-1)-targeted NIR-PIT using xenograft mouse models subcutaneously inoculated with two human ICAM-1-expressing TNBC cell lines, MDAMB468-luc and MDAMB231 cells. In vitro ICAM-1-targeted NIR-PIT damaged both cell types in a NIR light dose-dependent manner. In vivo ICAM-1-targeted NIR-PIT in both models showed early histological signs of cancer cell damage, such as cytoplasmic vacuolation. Even among the cancer cells that appeared to be morphologically intact within 2 h post treatment, abnormal distribution of the actin cytoskeleton and a significant decrease in Ki-67 positivity were observed, indicating widespread cellular injury reflected in cytoplasmic degeneration. Such damage to cancer cells by NIR-PIT significantly inhibited subsequent tumor growth and improved survival. This study suggests that ICAM-1-targeted NIR-PIT could have potential clinical application in the treatment of TNBC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app