Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Comparative studies on the effect of pig adipose-derived stem cells (pASCs) preconditioned with hypoxia or normoxia on skin wound healing in mice.

Adipose-derived stem cells (ASCs) from human and animal fat have emerged as therapeutic alternatives for damaged tissues. Pre-conditioning of ASCs with hypoxia results in their functional enhancement, which might facilitate the process of healing. However, there is still a critical need for large-scale preclinical studies to reinforce the translation of these findings into clinical practice for humans and in veterinary medicine. Here, we adapted a full-thickness excisional skin wound mouse model to evaluate and compare the effect of pig adipose-derived stem cells (pASCs) cultured under normoxia (pASCs-Nor) or hypoxia (pASCs-Hyp) on the healing process. We show that pASCs-Hyp accelerated re-epithelialization, increased hyaluronic acid (HA) content, and decreased scar elevation index (SEI) during the late stage of healing (day 21). Transplantation of pASCs-Hyp also promoted expression of angiogenic marker VegfA and decreased levels of pro-scarring Tgfβ1. Mice tolerated xenotransplantation of the pASCs with no impact on macrophage (CD68 -positive cell) content. However, wounds treated with pASCs-Hyp exhibited decreased elasticity at the early stage of healing and increased expression of Wnt signaling members including Wnt10a, Wnt11, and β-catenin, which are associated with scar-forming wound repair. In conclusion, pASCs treatment may provide a critical step toward the evaluation of pASCs as therapeutically relevant cells in the context of wound healing.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app