Add like
Add dislike
Add to saved papers

Ubiquitin E3 ligase Atrogin-1 protein is regulated via the rapamycin-sensitive mTOR-S6K1 signaling pathway in C2C12 muscle cells.

Atrogin-1 and MuRF1 are highly expressed in multiple conditions of skeletal muscle atrophy. The PI3K/Akt/FoxO signaling pathway is well known to regulate Atrogin-1 and MuRF1 gene expressions. However, Akt activation also activates the mammalian target of rapamycin complex 1 (mTORC1) which induces skeletal muscle hypertrophy. Whether mTORC1-dependent signaling has a role in regulating Atrogin-1 and/or MuRF1 gene and protein expression is currently unclear. In this study, we showed that activation of insulin-mediated Akt signaling suppresses both Atrogin-1 and MuRF1 protein contents and that inhibition of Akt increases both Atrogin-1 and MuRF1 protein contents in C2C12 myotubes. Interestingly, inhibition of mTORC1 using a specific mTORC1 inhibitor, rapamycin, increased Atrogin-1, but not MuRF1, protein content. Furthermore, activation of AMP-activated protein kinase (AMPK), a negative regulator of the mTORC1 signaling pathway, also showed distinct time-dependent changes between Atrogin-1 and MuRF1 protein contents, suggesting differential regulatory mechanisms between Atrogin-1 and MuRF1 protein content. To further explore the downstream of mTORC1 signaling, we employed a specific S6K1 inhibitor, PF-4708671. We found that Atrogin-1 protein content was dose-dependently increased with PF-4708671 treatment, whereas MuRF1 protein content was decreased at 50 μM of PF-4708671 treatment. However, MuRF1 protein content was unexpectedly increased when treated with PF-4708671 for a longer period. Overall, our results indicate that Atrogin-1 and MuRF1 protein contents are regulated by different mechanisms, the downstream of Akt, and that Atrogin-1 protein content can be regulated by rapamycin-sensitive mTOR-S6K1 dependent signaling pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app