Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Genome-wide transcriptome profiling of human trabecular meshwork cells treated with TGF-β2.

Scientific Reports 2022 June 11
Glaucoma is a complex neurodegenerative disease resulting in progressive optic neuropathy and is a leading cause of irreversible blindness worldwide. Primary open angle glaucoma (POAG) is the predominant form affecting 65.5 million people globally. Despite the prevalence of POAG and the identification of over 120 glaucoma related genetic loci, the underlaying molecular mechanisms are still poorly understood. The transforming growth factor beta (TGF-β) signalling pathway is implicated in the molecular pathology of POAG. To gain a better understanding of the role TGF-β2 plays in the glaucomatous changes to the molecular pathology in the trabecular meshwork, we employed RNA-Seq to delineate the TGF-β2 induced changes in the transcriptome of normal primary human trabecular meshwork cells (HTM). We identified a significant number of differentially expressed genes and associated pathways that contribute to the pathogenesis of POAG. The differentially expressed genes were predominantly enriched in ECM regulation, TGF-β signalling, proliferation/apoptosis, inflammation/wound healing, MAPK signalling, oxidative stress and RHO signalling. Canonical pathway analysis confirmed the enrichment of RhoA signalling, inflammatory-related processes, ECM and cytoskeletal organisation in HTM cells in response to TGF-β2. We also identified novel genes and pathways that were affected after TGF-β2 treatment in the HTM, suggesting additional pathways are activated, including Nrf2, PI3K-Akt, MAPK and HIPPO signalling pathways. The identification and characterisation of TGF-β2 dependent differentially expressed genes and pathways in HTM cells is essential to understand the patho-physiology of glaucoma and to develop new therapeutic agents.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app