Add like
Add dislike
Add to saved papers

Assessment of asymmetric dimethylarginine and homocysteine in epileptic children receiving antiepileptic drugs.

Pediatric Research 2022 June 11
BACKGROUND: Epilepsy is a neurological disease that requires long-term antiepileptic drugs (AEDs). The old generation of AEDs may affect serum homocysteine and asymmetric dimethylarginine (ADMA) and disturb lipid levels. The aim of the study was to evaluate serum ADMA, homocysteine, lipid profile, and carotid intima-media thickness (CIMT) in epileptic children.

METHODS: This study was implemented on 159 epileptic children who were subdivided into 3 subgroups, with 53 receiving sodium valproate, 53 receiving levetiracetam, and 53 receiving polytherapy, for over 6 months and 53 healthy children.

RESULTS: Low-density lipoprotein, triglycerides, and cholesterol levels were increased in epileptic children (p < 0.001), which were higher in those receiving multidrug followed by a valproate receiver. While high-density lipoprotein was lower in those receiving multidrug more than those receiving valproate. ADMA and homocysteine levels increased in epileptic patients than in controls (p < 0.001). Higher ADMA was also observed in the multidrug receiver (5.78 ± 0.62), followed by the levetiracetam group (5.56 ± 0.61). Homocysteine levels were significantly higher in multidrug and valproate-treated children than those treated with levetiracetam. CIMT was significantly higher in multidrug and valproate-treated patients (p < 0.001).

CONCLUSIONS: Long-term use of AEDs, especially old-generation polytherapy, can elevate lipid profiles, homocysteine, ADMA levels, and carotid intima-media thickness compared to the minimal effect of new AEDs.

IMPACT: The long-term use of antiepileptic drugs, especially old-generation polytherapy, can increase lipid profiles, homocysteine levels, ADMA, and carotid intima thickness compared to the minimal effect of new antiepileptic generation. A routine follow-up of these markers and a lifestyle modification are recommended to avoid cerebrovascular events as much as possible.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app