Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Mussel-inspired monomer - A new selective protease inhibitor against dentine collagen degradation.

OBJECTIVES: To evaluate the inhibitory effect of a novel mussel-inspired monomer (N-(3,4-dihydroxyphenethyl)methacrylamide (DMA) on the soluble and matrix-bound proteases.

METHODS: The inhibitory effect of DMA (0, 1, 5, and 10 mM) and 1 mM chlorhexidine (CHX) dissolved in 50% ethanol/water on soluble recombinant human matrix metalloproteinases (rhMMP-2, -8, and -9), as well as cysteine cathepsins (B and K) were evaluated using both fluorometric assay kits and molecular docking. The effect of CHX and DMA on matrix-bound proteases was examined by in situ zymography, and the fluorescence intensity and relative area were calculated by Image J software. All data obtained were analyzed by one-way ANOVA followed by Tukey test (α = 0.05).

RESULTS: The anti-proteolytic ability of DMA increased in a dose-dependent manner except that of rhMMP-9. Inhibitory effect of 1 mM DMA against rhMMP-2, - 8, - 9, as well as cathepsin B and K was all significantly lower than 1 mM CHX (p < 0.05). The molecular docking analysis was in good agreement with the experimental results, that the binding energy of DMA was lower than CHX for all proteases. In situ zymography revealed that all DMA- and CHX-treated groups significantly inactivated the matrix-bound proteases, with a dramatic reduction of the fluorescence intensity and relative area compared with the control group (p < 0.05).

SIGNIFICANCE: Under the prerequisite condition that the overall inhibitory performance on matrix-bound proteases was comparable by DMA and CHX, the more selective property of DMA could avoid inducing potential negative effects by suppressing MMP-9 when applied in dental treatment compared with CHX.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app