Add like
Add dislike
Add to saved papers

Pre-collapse femoral head necrosis treated by hip abduction: a computational biomechanical analysis.

Background and objective: Clinical studies indicated that femoral head collapse (FHC) occurs in 90% of patients without intervention within five years after the diagnosis of femoral head necrosis (FHN). The management of the FHN is still a great challenging task. Clinical studies indicated that hip abduction as physical therapy represents an effective hip preservation method. However, the mechanism is unclear. In this study, we use computational biomechanical technology to investigate mechanical response in FHN patients with hip abduction and establish guide protocols for FHN rehabilitation.

Materials and methods: Thirty computational models were constructed for evaluating the safety of hip abduction and comparing the biomechanical performance of hip abduction for the treatment of different necrotic classifications. The distribution of principal compressive stress (PCS) and load share ratio (LSR) were computed and used for biomechanical evaluation.

Results: Before the start of physical therapy, when the size of necrotic segment is increased and located more laterally, the damage area of PCS enlarged and LSR of subchondral cortical to trabecular bone increased. As the increase of hip abduction angle, PCS of Type B transformed into Type A, PCS of Type C1 transformed into Type B, PCS of Type C2 transformed into Type C1; Except Type C2, the LSR return to normal level.

Discussion and conclusion: Stress transfer damaged pattern correlated significantly with necrotic classification. Hip abduction motions effectively enlarge the area of PCS and recover the LSR of different structures by altering motion posture during gait. The results indicated that hip abduction may be an effective physical therapy in improving hip function and interrupt the disease pathway of FHC and THA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app