Add like
Add dislike
Add to saved papers

Probing the Intracellular Delivery of Nanoparticles into Hard-to-Transfect Cells.

ACS Nano 2022 May 18
Hard-to-transfect cells are cells that are known to present special difficulties in intracellular delivery of exogenous entities. However, the special transport behaviors underlying the special delivery problem in these cells have so far not been examined carefully. Here, we combine single-particle motion analysis, cell biology studies, and mathematical modeling to investigate nanoparticle transport in bone marrow-derived mesenchymal stem cells (BMSCs), a technologically important type of hard-to-transfect cells. Tat peptide-conjugated quantum dots (QDs-Tat) were used as the model nanoparticles. Two different yet complementary single-particle methods, namely, pair-correlation function and single-particle tracking, were conducted on the same cell samples and on the same viewing stage of a confocal microscope. Our results reveal significant differences in each individual step of transport of QDs-Tat in BMSCs vs a commonly used model cell line, HeLa cells. Single-particle motion analysis demonstrates that vesicle escape and cytoplasmic diffusion are dramatically more difficult in BMSCs than in HeLa cells. Cell biology studies show that BMSCs use different biological pathways for the cellular uptake, vesicular transport, and exocytosis of QDs-Tat than HeLa cells. A reaction-diffusion-advection model is employed to mathematically integrate the individual steps of cellular transport and can be used to predict and design nanoparticle delivery in BMSCs. This work provides dissective, quantitative, and mechanistic understandings of nanoparticle transport in BMSCs. The investigative methods described in this work can help to guide the tailored design of nanoparticle-based delivery in specific types and subtypes of hard-to-transfect cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app