Add like
Add dislike
Add to saved papers

The Deletion of IL-17A Enhances Helicobacter hepaticus Colonization and Triggers Colitis.

Objective: IL-17 is a key regulator of the inflammatory response, and as such, it is involved in the constraint and clearance of pathogens. The mechanism of IL-17 in the pathogenesis of inflammatory bowel disease (IBD) caused by microbial infection is still unclear. Helicobacter hepaticus infection can induce colitis in many mouse strains, and thus, it has been widely used in the study of IBD pathogenesis.

Methods: In this study, male C57BL/6, BALB/c, Il-10-/- , and Il-17a-/- mice were infected with H. hepaticus for several weeks. Histopathology, H. hepaticus colonization and distribution, expression of inflammatory cytokines and lysozyme, and distribution of mucus in proximal colon were examined.

Results: The colonic colonization of H. hepaticus was abnormally high in Il-17a-/- mice. H. hepaticus infection caused only mild to moderate colitis symptoms in Il-17a-/- mice, including low levels of lymphocyte infiltration, epithelial cell defects, goblet cell reduction, and crypt atrophy without obvious hyperplasia in the later stage of infection. Furthermore, many inflammatory genes were significantly increased in the proximal colon of H. hepaticus -infected Il-17a-/- mice compared with C57BL/6 mice. In addition, the reduction of colonic mucus and the down-regulation of ZO-1, Claudin-1, and IL-22 were observed in Il-17a-/- mice compared with C57BL/6 mice post H. hepaticus infection.

Conclusion: These results demonstrated that the deletion of IL-17A impaired the integrity of the intestinal epithelium, weakened the secretion of mucus, attenuated colonic mucosal regeneration, reduced the ability to resist microbial infection, and finally led to colitis caused by H. hepaticus .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app