Add like
Add dislike
Add to saved papers

Gonadal Soma-Derived Factor Expression is a Potential Biomarker for Predicting the Effects of Endocrine-Disrupting Chemicals on Gonadal Differentiation in Japanese Medaka (Oryzias Latipes).

Chemicals with androgenic or estrogenic activity induce the sex reversal and/or intersex condition in various teleost fish species. Previously, we reported that exposure to 17α-methyltestosterone, bisphenol A, or 4-nonylphenol induces changes in expression of the gonadal soma-derived factor (gsdf) gene accompanied by disruption of gonadal differentiation in Japanese medaka (Oryzias latipes). These findings suggest that gsdf expression might be a useful biomarker for predicting the potential effect of chemicals on gonadal differentiation. We examined the gsdf expression in Japanese medaka exposed to chemicals with estrogenic or androgenic activity. Exposure to the androgenic steroid 17β-trenbolone at 0.5-22.1 μg/L induced the development of ovotestis (presence of ovarian tissue with testicular tissue) and female-to-male sex reversal in XX embryos, and exposure at 6.32 and 22.1 μg/L significantly increased gsdf expression in XX embryos compared with controls at developmental stage 38 (1 day before hatching). In the present study, no statistically significant difference in gsdf mRNA expression was observed after exposure to 17β-estradiol, 17α-ethinylestradiol, and 4-t-octylphenol, which have estrogenic activity. In addition, antiandrogenic chemicals or chemicals without endocrine-disrupting activity did not induce changes in gsdf expression in XX or XY embryos. Thus, an increase in gsdf expression after androgen exposure was observed in XX embryos. Together, these findings indicate that gsdf expression might be useful for predicting the adverse effect of chemicals on gonadal differentiation. Environ Toxicol Chem 2022;41:1875-1884. © 2022 SETAC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app