Add like
Add dislike
Add to saved papers

Emergence and Breaking of Duality Symmetry in Generalized Fundamental Thermodynamic Relations.

Thermodynamics as limiting behaviors of statistics is generalized to arbitrary systems with probability a priori where the thermodynamic infinite-size limit is replaced by a multiple-measurement limit. A duality symmetry between Massieu's and Gibbs's entropy arises in the limit of infinitely repeated observations, yielding the Gibbs equation and Hill-Gibbs-Duhem equation (HGDE) as a dual pair. If a system has a thermodynamic limit satisfying Callen's postulate, entropy being an Eulerian function, the symmetry is lost: the HGDE reduces to the Gibbs-Duhem equation. This theory provides a de-mechanized foundation for classical and nanothermodynamics and offers a framework for distilling emergence from large data, free from underlying details.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app