Add like
Add dislike
Add to saved papers

miRNA-142-3p functions as a potential tumor suppressor directly targeting FAM83D in the development of ovarian cancer.

Aging 2022 April 23
BACKGROUND: FAM83D (family with sequence similarity 83, member D) is of particular interest in tumorigenesis and tumor progression. Ovarian cancer is the leading cause of cancer-related death in women all over the world. This study aims to research the association between FAM83D and ovarian cancer (OC).

METHODS: The gene expression data of OC and normal samples (GSE81873 and GSE27651) was downloaded from Gene Expression Omnibus (GEO) dataset. The bioinformatics analysis was performed to distinguish two differentially expressed genes (DEGs), prognostic candidate genes and functional enrichment pathways. Immunohistochemistry (IHC), Quantitative Real-time PCR (qPCR), and luciferase reporter assays were utilized for further study.

RESULTS: There were 56 DEMs and 63 DEGs in cancer tissues compared to normal tissues. According to the km-plot software, hsa-miR-142-3p and FAM83D were associated with the overall survival of patients with OC. Besides, Multivariate analysis included that hsa-miR-142-3p and FAM83D were independent risk factors for OC patients. Furthermore, qPCR demonstrated that miRNA-142-3p and FAM83D were differentially expressed in normal ovarian tissues (NOTs) and ovarian cancer tissues (OCTs). IHC results indicated that FAM83D was overexpressed in OCTs compared with NOTs. Last but not least, luciferase reporter assays verified that FAM83D was a direct target of hsa-miRNA-142-3p in OC cells.

CONCLUSIONS: The prognostic model based on the miRNA-mRNA network could provide predictive significance for the prognosis of OC patients, which would be worthy of clinical application. Our results concluded that miR-142-3p and its targets gene FAM83D may be potential diagnostic and prognostic biomarkers for patients with OC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app