Add like
Add dislike
Add to saved papers

Tuning the exposure of BiVO 4 -{010} facets to enhance the N 2 photofixation performance.

RSC Advances 2021 August 24
Effective separation of photoexcited carriers and chemisorption of the N2 molecule are two key issues to efficient nitrogen photofixation. The spatial charge separation of BiVO4 with anisotropic exposed facets, namely the transfer of photoexcited electrons and holes to {010} and {110} facets, respectively, helps to enhance the separation ability of photogenerated carriers. Theoretical calculation results predict that a surface oxygen vacancy is easier to form on the (010) facet than on the (110) facet of BiVO4 . Accordingly, in this study, enhanced N2 photofixation performance has been achieved for the first time by tuning the exposure of {010} facets of BiVO4 .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app