Add like
Add dislike
Add to saved papers

Deep learning-based motion artifact removal in functional near-infrared spectroscopy.

Neurophotonics 2022 October
Significance: Functional near-infrared spectroscopy (fNIRS), a well-established neuroimaging technique, enables monitoring cortical activation while subjects are unconstrained. However, motion artifact is a common type of noise that can hamper the interpretation of fNIRS data. Current methods that have been proposed to mitigate motion artifacts in fNIRS data are still dependent on expert-based knowledge and the post hoc tuning of parameters. Aim: Here, we report a deep learning method that aims at motion artifact removal from fNIRS data while being assumption free. To the best of our knowledge, this is the first investigation to report on the use of a denoising autoencoder (DAE) architecture for motion artifact removal. Approach: To facilitate the training of this deep learning architecture, we (i) designed a specific loss function and (ii) generated data to mimic the properties of recorded fNIRS sequences. Results: The DAE model outperformed conventional methods in lowering residual motion artifacts, decreasing mean squared error, and increasing computational efficiency. Conclusion: Overall, this work demonstrates the potential of deep learning models for accurate and fast motion artifact removal in fNIRS data.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app