Add like
Add dislike
Add to saved papers

Quantitative endoscopic photoacoustic tomography using a convolutional neural network.

Applied Optics 2022 April 2
Endoscopic photoacoustic tomography (EPAT) is a catheter-based hybrid imaging modality capable of providing structural and functional information of biological luminal structures, such as coronary arterial vessels and the digestive tract. The recovery of the optical properties of the imaged tissue from acoustic measurements achieved by optical inversion is essential for implementing quantitative EPAT (qEPAT). In this paper, a convolutional neural network (CNN) based on deep gradient descent is developed for qEPAT. The network enables the reconstruction of images representing the spatially varying absorption coefficient in cross-sections of the tubular structures from limited measurement data. The forward operator reflecting the mapping from the absorption coefficient to the optical deposition due to pulsed irradiation is embedded into the network training. The network parameters are optimized layer by layer through the deep gradient descent mechanism using the numerically simulated data. The operation processes of the forward operator and its adjoint operator are separated from the network training. The trained network outputs an image representing the distribution of absorption coefficients by inputting an image that represents the optical deposition. The method has been tested with computer-generated phantoms mimicking coronary arterial vessels containing various tissue types. Results suggest that the structural similarity of the images reconstructed by our method is increased by about 10% in comparison with the non-learning method based on error minimization in the case of the same measuring view.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app