Journal Article
Review
Add like
Add dislike
Add to saved papers

A Shared Nephroprotective Mechanism for Renin-Angiotensin-System Inhibitors, Sodium-Glucose Co-Transporter 2 Inhibitors, and Vasopressin Receptor Antagonists: Immunology Meets Hemodynamics.

A major paradigm in nephrology states that the loss of filtration function over a long time is driven by a persistent hyperfiltration state of surviving nephrons. This hyperfiltration may derive from circulating immunological factors. However, some clue about the hemodynamic effects of these factors derives from the effects of so-called nephroprotective drugs. Thirty years after the introduction of Renin-Angiotensin-system inhibitors (RASi) into clinical practice, two new families of nephroprotective drugs have been identified: the sodium-glucose cotransporter 2 inhibitors (SGLT2i) and the vasopressin receptor antagonists (VRA). Even though the molecular targets of the three-drug classes are very different, they share the reduction in the glomerular filtration rate (GFR) at the beginning of the therapy, which is usually considered an adverse effect. Therefore, we hypothesize that acute GFR decline is a prerequisite to obtaining nephroprotection with all these drugs. In this study, we reanalyze evidence that RASi, SGLT2i, and VRA reduce the eGFR at the onset of therapy. Afterward, we evaluate whether the extent of eGFR reduction correlates with their long-term efficacy. The results suggest that the extent of initial eGFR decline predicts the nephroprotective efficacy in the long run. Therefore, we propose that RASi, SGLT2i, and VRA delay kidney disease progression by controlling maladaptive glomerular hyperfiltration resulting from circulating immunological factors. Further studies are needed to verify their combined effects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app