Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The association between overnight recognition accuracy and slow oscillation-spindle coupling is moderated by BDNF Val66Met.

During sleep, memories are consolidated via oscillatory events that occur in temporal and phasic synchrony. Several studies show that sleep spindles peaking close to the depolarized positive peaks of slow oscillations (SO) associate with better retention of memories. The exact timing of this synchrony presumably depends on the properties of the related neural network that, in turn, is affected by certain genetic variants associated with brain development and function. Brain-derived neurotrophic factor (BDNF) Val66Met and Catechol-O-methyltransferase (COMT) Val158Met are repeatedly reported to implicate the structure and function of prefrontal and hippocampal areas as well as molecular events promoting synaptic plasticity. In this study, we examined with a community-based sample of 153 adolescents (~17 years) whether these variants (1) affected the coupling properties between frontal SOs and spindles and (2) moderated the association between SO-spindle coupling and overnight recognition accuracy. We found SO-upstate-coupled fast (> 13 Hz) sleep spindles to associate with better recognition in the whole sample. Additionally, Val66Met moderated this association such that SO-spindle coupling was predictive of memory outcome only in those homozygous to ValBDNF alleles but not in MetBDNF carriers. Memory outcome was not associated with the SO-coupling properties of slow spindles nor affected by the interaction between Val158Met and coupling measures. Finally, in the whole sample we found that SO-upstate-coupled fast spindles were more strongly associated with the recognition of positive, relative to neutral, pictures. In conclusion, precise coupling of SOs and fast spindles associates with overnight recognition accuracy and this association is moderated by BDNF Val66Met.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app