Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Anatomical classification and clinical application of thoracic paraspinal blocks.

Various techniques for regional anesthesia and analgesia of the thorax are currently being used in clinical practice. A recent international consensus has anatomically classified paraspinal blocks in the thoracic spinal region into the following four types: paravertebral, retrolaminar, erector spinae plane, and intertransverse process blocks. These blocks have different anatomical targets; thus, the spreading patterns of the injectates differ and can consequently exhibit different neural blockade characteristics. The paravertebral block directly targets the paravertebral space just outside the neuraxial region and has an analgesic efficacy comparable to that of the epidural block; however, there are multiple potential risks associated with this technique. Retrolaminar and erector spinae plane blocks target the erector spinae plane on the vertebral lamina and transverse process, respectively. In anatomical studies, these two blocks showed different injectate spreading patterns to the back muscles and the fascial plane. In cadaveric studies, paravertebral spread was identified, but variable. However, numerous clinical reports have shown paravertebral spread with erector spinae plane blocks. Both techniques have been found to reduce postoperative pain compared to controls; however, the results have been more inconsistent than with the paravertebral block. Finally, the intertransverse process block targets the tissue complex posterior to the superior costotransverse ligament. Anatomical studies have revealed that this block has pathways that are more direct and closer to the paravertebral space than the retrolaminar and erector spinae plane blocks. Cadaveric evaluations have consistently shown promising results; however, further clinical studies using this technique are needed to confirm these anatomical findings.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app