Add like
Add dislike
Add to saved papers

The absence of cellular glucose triggers oncogene AEG-1 that instigates VEGFC in HCC: A possible genetic root cause of angiogenesis.

Gene 2022 March 23
BACKGROUND AND OBJECTIVE: Astrocyte Elevated Gene-1 (AEG-1) is the master and multi-regulator of the various transcriptional factor primarily regulating chemoresistance, angiogenesis, metastasis, and invasion under the pathological condition, including liver cancer. This study was focused on investigating the process of tumor angiogenesis in liver carcinoma by studying the role of AEG-1 under GD/2DG conditions.

METHOD AND RESULTS: The PCR and western blot analysis revealed that glucose depletion (GD) induces the overexpression of AEG-1. Further, it leads to the constant expression of VEGFC through the activation of HIF-1α/CCR7 via the stimulations of PI3K/Akt signaling pathways. GLUT2 is the major transporter of a glucose molecule that is highly participating under GD through the expression of AEG-1 and constantly expresses glucokinase (GCK). The obtained data suggest that AEG-1 act as an angiogenesis and glycolysis regulator by modulating the expression of GCK through HIF-1α and GLUT2. 2-deoxy-D-glucose (2DG) is a glycolysis inhibitor that induces impaired glycolysis and cellular apoptosis by cellular oxidative stress. The administration of 2DG has led to the chemoresistance of AEG-1.

CONCLUSION: The total findings of the study judged that disruption of cellular energy metabolism induced by the absence of glucose or the presence of mutant glucose moiety (2DG) promotes the overexpression of AEG-1. The GD/2DG activates the VEGFC by inducing the HIF-1α and CCR7. Moreover, AEG-1 induces the expression of OPN, which regulates metastasis, angiogenesis, and actively participates in protective autophagy by promoting LC3 a/b.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app