Add like
Add dislike
Add to saved papers

Influence of Doping on the Topological Surface States of Crystalline Bi 2 Se 3 Topological Insulators.

Materials 2022 March 12
We present STM/STS, ARPES and magnetotransport studies of the surface topography and electronic structure of pristine Bi2 Se3 in comparison to Bi1.96 Mg0.04 Se3 and Bi1.98 Fe0.02 Se3 . The topography images reveal a large number of complex, triangle-shaped defects at the surface. The local electronic structure of both the defected and non-defected regions is examined by STS. The defect-related states shift together with the Dirac point observed in the undefected area, suggesting that the local electronic structure at the defects is influenced by doping in the same way as the electronic structure of the undefected surface. Additional information about the electronic structure of the samples is provided by ARPES, which reveals the dependence of the bulk and surface electronic bands on doping, including such parameters as the Fermi wave vector. The subtle changes of the surface electronic structure by doping are verified with magneto-transport measurements at low temperatures (200 mK) allowing the detection of Shubnikov-de Haas (SdH) quantum oscillations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app