Add like
Add dislike
Add to saved papers

Analyzing large scale gene expression data in colorectal cancer reveals important clues; CLCA1 and SELENBP1 downregulated in CRC not in normal and not in adenoma.

Early detection of colorectal cancer (CRC) increases the chances of survival and reduces the therapeutic problems and costs of treatment. Since molecular biomarkers can help us diagnose colorectal cancer early, we need to identify novel gene for predicting the early stages of tumorigenesis. Here, we integrated five independent CRC gene expression datasets derived from expression profiling by array comparing CRC with normal samples in: GSE21510, GSE4107, GSE25071, GSE15781 dataset, and GSE8671 dataset, including 64 samples from 32 patients comparing 32 colonic normal mucosa with 32 colorectal adenoma. To detect genes that expressed differentially in experimental circumstances of these datasets, we used web tool of GEO2R to compare groups of samples in the GEO data series. Furthermore, we constructed the protein-protein interactions network by STRING database for mostly downregulated genes and the expression of their members in PPI network were studied into five datasets separately. Also, the level of expression of selected biomarker genes in different stages of CRC compared to normal was studied. Our data revealed 17 common downregulated genes (average fold change (FC) in five tests ≥6) in CRC in comparison with normal (Test 1 to Test 4) and in adenoma compared with normal (Test 5). Studying of gene expression of PPI network members of these downregulated genes led to identifying of CLCA1, SELENBP1, CWC25, ACOT11, GUCY2C and ALDH1A1 as suppressor genes and PTGS2, PROCR, MOCS3 and NFS1 as oncogenes which respectively downregulated and upregulated in CRC. Since decreasing of gene expression was seen in CRC comparing with normal and due to no different expression seen for these 10 genes in adenoma, they, especially CLCA1 and SELENBP1, could be considered as biomarkers for early detection of CRC. Before using these signature genes in the clinic; however, further validations are required.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app