Add like
Add dislike
Add to saved papers

Fluorescence of nanodiamond cocktails: pH-induced effects through interactions with comestible liquids.

Food Chemistry 2022 January 22
Fluorescent nanodiamonds with nitrogen-vacancy centers have become important nanoscale probes for sensing and imaging. The surface chemistry of the nanodiamonds influences their emission, interactions, and quantum properties. In this work, we propose to utilize fluorescent nanodiamonds as photostable markers for investigation of comestible liquids. We prepared nanodiamond/comestibles suspensions/cocktails with a wide range of pH levels and studied the samples via fluorescence, wettability, and zeta potential. The composition of the created cocktails revealed a strong impact on the properties of the nanodiamond and its surface chemistry, mainly induced by pH but also tuned by specific quenching compounds. Moreover, the stability of the nanodiamonds in the cocktail media was studied, along with various nature-originated compounds influencing their surface termination, polarity, and charge states. Thanks to the stability and biocompatibility of the nanodiamond, it can be applied in monitoring the condition of foodstuffs, and in the detection of toxins and pathogens in them.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app