Add like
Add dislike
Add to saved papers

Identification of Sclareol As a Natural Neuroprotective Ca v 1.3-Antagonist Using Synthetic Parkinson-Mimetic Gene Circuits and Computer-Aided Drug Discovery.

Parkinson's disease (PD) results from selective loss of substantia nigra dopaminergic (SNc DA) neurons, and is primarily caused by excessive activity-related Ca2+ oscillations. Although L-type voltage-gated calcium channel blockers (CCBs) selectively inhibiting Cav 1.3 are considered promising candidates for PD treatment, drug discovery is hampered by the lack of high-throughput screening technologies permitting isoform-specific assessment of Cav-antagonistic activities. Here, a synthetic-biology-inspired drug-discovery platform enables identification of PD-relevant drug candidates. By deflecting Cav-dependent activation of nuclear factor of activated T-cells (NFAT)-signaling to repression of reporter gene translation, they engineered a cell-based assay where reporter gene expression is activated by putative CCBs. By using this platform in combination with in silico virtual screening and a trained deep-learning neural network, sclareol is identified from a essential oils library as a structurally distinctive compound that can be used for PD pharmacotherapy. In vitro studies, biochemical assays and whole-cell patch-clamp recordings confirmed that sclareol inhibits Cav 1.3 more strongly than Cav 1.2 and decreases firing responses of SNc DA neurons. In a mouse model of PD, sclareol treatment reduced DA neuronal loss and protected striatal network dynamics as well as motor performance. Thus, sclareol appears to be a promising drug candidate for neuroprotection in PD patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app