Add like
Add dislike
Add to saved papers

Treatment of oily wastewaters by highly porous whisker-constructed ceramic membranes: Separation performance and fouling models.

Water Research 2022 January 7
Efficient treatment of challenging oily emulsion wastewater can alleviate water pollution to provide more chances for water reuse and resource recovery. Despite their promising application potential, conventional porous ceramic membranes have challenging bottleneck issues such as high cost and insufficient permeance. This study presents a new strategy for highly efficient treatment of not only synthetic but real oily emulsions via unexpensive whisker-constructed ceramic membranes, exhibiting exceptional permeance and less energy input. Compared with common ceramic membranes, such lower-cost mullite membranes with a novel whisker-constructed structure show higher porosity and water permeance, and better surface oleophobicity in water. Treatment performance such as permeate flux and oil rejection was explored for the oily emulsions with different properties under key operating parameters. Furthermore, classical Hermia models were used to reveal membrane fouling mechanism to well understand the microscopic interactions between emulsion droplets and membrane interface. Even for real acidic oily wastewater, such membranes also exhibit high permeance and less energy consumption, outperforming most state-of-the-art ceramic membranes. This work provides a new structure concept of highly permeably whisker-constructed porous ceramic membranes that can efficiently enable more water separation applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app