Add like
Add dislike
Add to saved papers

Non-motor effects of subthalamic nucleus stimulation in Parkinson patients.

The current white matter connectivity analyses of the subthalamic region have focused on the motor effects of deep brain stimulation. We investigate white matter connectivity associated with the stimulation-induced non-motor acute clinical effects in three domains: mood changes, dizziness, and sweating. We performed whole-brain probabilistic tractography seeded from the domain-specific stimulation volumes. The resultant connectivity maps were statistically compared across patients. The cortical voxels associated with each non-motor domain were compared with stimulation-induced motor improvements in a multivariate model. The resulting voxel maps were thresholded for false discovery (FDR q < 0.05) and clustered using a multimodal atlas. We also performed a group-level parcellation of stimulation volumes to identify the local pathways associated with each non-motor domain. The non-motor effects were rarely observed during stimulation titration: from 1100 acute clinical effects, mood change was observed in 14, dizziness in 23, and sweating in 20. Distinct cortical clusters were associated with each domain; notably, mood change was associated with voxels in the salience network and dizziness with voxels in the visual association cortex. The subthalamic parcellation yielded a mediolateral gradient, with the motor parcel being lateral and the non-motor parcels medial. We also observed an anteroposterior organization in the medial non-motor clusters with mood changes being anterior, followed posteriorly by dizziness, and sweating. We interpret these findings based on the literature and foresee these to be useful in guiding DBS programming.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app