Add like
Add dislike
Add to saved papers

Design of a Long-Acting Rivastigmine Transdermal Delivery System: Based on Computational Simulation.

AAPS PharmSciTech 2022 January 14
The purpose of our study was using a computational simulation to develop a long-acting patch of rivastigmine (RVS). A range of patch formulations were screened including pressure sensitive adhesive (PSA), pharmaceutical excipients, and controlled release membranes using transfer simulation based on a mathematical model. Diffusion dynamics parameters for simulated operations were acquired through in vitro release tests (IVRT) and in vitro skin permeation tests (IVPT). The mechanism of controlled release was studied by FTIR (Fourier transform infrared), DSC (differential scanning calorimeter) and molecular docking. Results of a rat in vitro permeation profile showed excellent correlation with the in vivo deconvolution profile (R2 =0.998). Experiments testified to transfer of RVS at a relatively uniform speed with high skin permeation (2531.2±142.46 μg/cm2 ) in 72 h. Pharmacokinetic data obtained in vivo also confirmed stable plasma concentrations over 72 h for the optimized patch, and significant prolongation of both Tmax (11.20±1.79 h) and MRT0-t (33.91±5.33 h). Cmax was controlled with AUC0-t (267.34±24.46 h ng/ml), which was closely comparable to parameters of a commercial Exelon® Patch. The successful development of a long-acting patch of RVS thus underscores the potential of computer aided design in a context of promnesic transdermal delivery. Graphical abstract.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app