Add like
Add dislike
Add to saved papers

Efficiency of a dexamethasone nanosuspension as an intratympanic injection for acute hearing loss.

Drug Delivery 2022 December
Dexamethasone sodium phosphate (Dex-SP) is the most commonly used drug administered via intratympanic injection for the treatment of acute hearing loss, but its penetration efficiency into the inner ear is very low. To address this problem, we evaluated the possibility of administering dexamethasone nanosuspensions via intratympanic injection because hydrophobic drugs might be more effective in penetrating the inner ear. Three types of dexamethasone nanosuspensions were prepared; the dexamethasone nanoparticles in the three nanosuspensions were between approximately 250 and 350 nm in size. To compare the efficiency of Dex-SP and dexamethasone nanosuspension in delivering dexamethasone to the inner ear, the concentrations of dexamethasone in perilymph and cochlear tissues were compared by liquid chromatography-mass spectrometry. The dexamethasone nanosuspensions resulted in significantly higher drug concentrations in perilymph and cochlear tissues than Dex-SP at 6 h; interestingly, animals treated with nanosuspensions showed a 26-fold higher dexamethasone concentrations in their cochlear tissues than animals treated with Dex-SP. In addition, dexamethasone nanosuspension caused better glucocorticoid receptor phosphorylation than Dex-SP both in vitro and in vivo , and in the ototoxic animal model, the nanosuspension showed a significantly better hearing-protective effect against ototoxic drugs than Dex-SP. In the in vivo safety evaluation, the nanosuspension showed no toxicity at concentrations up to 20 mg/mL. In conclusion, a nanosuspension of dexamethasone was able to deliver dexamethasone to the cochlea very safely and efficiently and showed potential as a formula for intratympanic injection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app