Read by QxMD icon Read

Drug Delivery

Gihan Mahmoud, Jarmila Jedelská, Samia Mohamed Omar, Boris Strehlow, Marc Schneider, Udo Bakowsky
Photodynamic therapy (PDT) that involves ergonomically delivered light in the presence of archetypical photosensitizer such as Protoporphyrin IX (PpIX) is a time-honored missile strategy in cancer therapeutics. Yet, the premature release of PpIX is one of the most abundant dilemma encounters the therapeutic outcomes of PDT due to associated toxicity and redistribution to serum proteins. In this study, ultrastable tetraether lipids (TELs) based liposomes were developed. PpIX molecules were identified to reside physically in the monolayer; thereby the inherent π-π stacking that leads to aggregation of PpIX in aqueous milieu was dramatically improved...
November 2018: Drug Delivery
David Warther, Ying Xiao, Fangting Li, Yuqin Wang, Kristyn Huffman, William R Freeman, Michael Sailor, Lingyun Cheng
The number of blind and low vision persons in the US is projected to increase to 5.68 million by 2020. The eye diseases causing loss of vision are life-long, chronic, and often need protracted presence of therapeutics at the disease site to keep the disease in remission. In addition, multiple pathologies participate in the disease process and a single therapy seems insufficient to bring the disease under control and prevent vision loss. This study demonstrates the use of porous silicon (pSi) particles sequentially loaded with daunorubicin (DNR) and dexamethasone (DEX) to create a synergistic intravitreally injectable dual-drug delivery system...
November 2018: Drug Delivery
Xiaofan Du, Jing Wang, Quan Zhou, Luwei Zhang, Sijia Wang, Zhenxi Zhang, Cuiping Yao
Gene delivery as a promising and valid tool has been used for treating many serious diseases that conventional drug therapies cannot cure. Due to the advancement of physical technology and nanotechnology, advanced physical gene delivery methods such as electroporation, magnetoporation, sonoporation and optoporation have been extensively developed and are receiving increasing attention, which have the advantages of briefness and nontoxicity. This review introduces the technique detail of membrane perforation, with a brief discussion for future development, with special emphasis on nanoparticles mediated optoporation that have developed as an new alternative transfection technique in the last two decades...
November 2018: Drug Delivery
Rafal Pokrowiecki
Along with the development of nanotechnological strategies for biomaterials associated with the prevention of infections, a myriad of clinically unproven techniques have been described to date. In this work, the aim was to perform a critical analysis of the literature available concerning antibacterial biomaterials for oral implantology and to provide a practical derivation for such a purpose. As anti-adhesive strategies may affect osseointegration, they should no longer be recommended for inclusion in this class of biomaterials, despite promising results in biomedical engineering for other, non-bone load bearing organs...
November 2018: Drug Delivery
Anni Pan, Zhaoyang Wang, Binlong Chen, Wenbing Dai, Hua Zhang, Bing He, Xueqing Wang, Yiguang Wang, Qiang Zhang
Modulation of the collagen-rich extracellular matrix (ECM) in solid tumors by the treatment with collagenase has been proved effective in enhancement of the interstitial transport and antitumor efficacy of antibodies. We, therefore, developed a PLGA-PEG-PLGA polymer-based thermosensitive hydrogel, which incorporated a HER2-targeted monoclonal antibody trastuzumab and collagenase (Col/Tra/Gel) for peritumoral administration. HER2-positvie BT474 tumor-bearing mice were selected as a model. The Col/Tra/Gel showed the continuous and biphasic release of protein drugs for 9 days in vitro...
November 2018: Drug Delivery
Xiaolong Tang, Longzhou Chen, Amin Li, Shiyu Cai, Yinci Zhang, Xueke Liu, Zhenyou Jiang, Xinkuang Liu, Yong Liang, Dong Ma
Sorafenib (SFB) has improved the treatment of hepatocellular carcinoma (HCC) and has fewer severe side effects than other agents used for that purpose. However, due to a lack of tumor-specific targeting, the concentration of the drug in tumor tissue cannot be permanently maintained at a level that inhibits tumor growth. To overcome this problem, we developed a novel SFB-loaded polymer nanoparticle (NP). The NP (a TPGS-b-PCL copolymer that was synthesized from ε-caprolactone and d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) via ring-opening polymerization) contains Pluronic P123 and SFB, and its surface is modified with anti-GPC3 antibody to produce the polymer nanoparticle (NP-SFB-Ab)...
November 2018: Drug Delivery
Song Yi Lee, Jin Woo Choi, Jae-Young Lee, Dae-Duk Kim, Hyo-Cheol Kim, Hyun-Jong Cho
Doxorubicin (DOX)-loaded, hyaluronic acid-ceramide (HACE) nanoassembly-releasing poly(lactic-co-glycolic acid) (PLGA) microspheres (MSs) were developed for transarterial chemoembolization (TACE) therapy of liver cancer. DOX/HACE MSs with a mean diameter of 27 μm and a spherical shape were prepared based on the modified emulsification method. Their in vitro biodegradability in artificial biological fluids was observed. A more sustained drug release pattern was observed from DOX/HACE MS than from DOX MS at pH 7...
November 2018: Drug Delivery
Maryam A Shetab Boushehri, Mona M A Abdel-Mottaleb, Arnaud Béduneau, Yann Pellequer, Alf Lamprecht
This study sought to develop a simple nanoparticle-based approach to enhance the efficiency and tolerability of lipopolysaccharide (LPS), a potent ligand of Toll-like Receptor 4 (TLR4), for immunotherapy in cancer. Despite holding promise within this context, the strong pro-inflammatory properties of LPS also account for its low tolerability given localized and systemic side effects, which restrict the administrable dosage. Herein, we investigated the effect of LPS decoration as a surface-active molecule on a polymeric matrix upon its efficiency and tolerability...
November 2018: Drug Delivery
Tiantian Ye, Yue Wu, Lei Shang, Xueqing Deng, Shujun Wang
Borneol as a penetration enhancer is widely used in guiding other components through the biological barrier into the targeting organs or tissues. This study aimed at studying effect and mechanism of synthetic borneol (S-BO) on improving lymphatic-targeting ability of 7-ethyl-10-hydroxycamptothecin liposomes (SN-38-Lips) via increasing lymph node uptake. At first, SN-38-Lips prepared had appropriate particle distribution, drug loading property and compatible stability with S-BO. Both in vitro cellular uptake and in vivo fluorescence imaging showed that 2 and 5 mg/mL S-BO, especially 2 mg/mL S-BO, enhanced cytoplasmic fluorescence signal of SN-38-Lips in the macrophages based on phagocytosis effect...
November 2018: Drug Delivery
Carol Yousry, Maha M Amin, Ahmed H Elshafeey, Omaima N El Gazayerly
Controlled-release multiparticulate systems of hydrophilic drugs usually suffer from poor encapsulation and rapid-release rate. In the present study, ultra-high loaded controlled release polymeric beads containing verapamil hydrochloride (VP) as hydrophilic model drug were efficiently prepared using superamphiphobic substrates aiming to improve patient compliance by reducing dosing frequency. Superamphiphobic substrates were fabricated using clean aluminum sheets etched with ammonia solution and were treated with 1...
November 2018: Drug Delivery
A R Tellegen, I Rudnik-Jansen, B Pouran, H M de Visser, H H Weinans, R E Thomas, M J L Kik, G C M Grinwis, J C Thies, N Woike, G Mihov, P J Emans, B P Meij, L B Creemers, M A Tryfonidou
Major hallmarks of osteoarthritis (OA) are cartilage degeneration, inflammation and osteophyte formation. COX-2 inhibitors counteract inflammation-related pain, but their prolonged oral use entails the risk for side effects. Local and prolonged administration in biocompatible and degradable drug delivery biomaterials could offer an efficient and safe treatment for the long-term management of OA symptoms. Therefore, we evaluated the disease-modifying effects and the optimal dose of polyesteramide microspheres delivering the COX-2 inhibitor celecoxib in a rat OA model...
November 2018: Drug Delivery
Jing Zhao, Shan Liu, Xueyuan Hu, Yunmei Zhang, Shenglei Yan, Hua Zhao, Mei Zeng, Yao Li, Lan Yang, Jingqing Zhang
Most antitumor ingredients found in nature have poor solubility. These ingredients are expected to have much better absorption and higher bioavailability than synthetic antitumor agents. Woody oil emulsive nanosystems carrying poorly soluble natural alkaloids were fabricated (evodiamine (EA) carried by fructus bruceae oil-based emulsive nanosystems, or EFEN). Fructus bruceae oil has two excipient-like properties (oil phase and stabilizer) that contribute to the formulation and one drug-like property (antitumor effects) that synergizes with the antitumor effect of EA...
November 2018: Drug Delivery
Yuqian Du, Chutong Tian, Menglin Wang, Di Huang, Wei Wei, Yan Liu, Lin Li, Bingjun Sun, Longfa Kou, Qiming Kan, Kexin Liu, Cong Luo, Jin Sun, Zhonggui He
Oligopeptide transporter 1 (PepT1) has been a striking prodrug-designing target. However, the underlying mechanism of PepT1 as a target to facilitate the oral absorption of nanoparticles (NPs) remains unclear. Herein, we modify Poly (lactic-co-glycolic acid) (PLGA) NPs with the conjugates of dipeptides (L-valine-valine, L-valine-phenylalanine) and polyoxyethylene (PEG Mw: 1000, 2000) stearate to facilitate oral delivery of docetaxel (DTX) to investigate the oral absorption mechanism and regulatory effects on PepT1 of the dipeptide-modified NPs...
November 2018: Drug Delivery
Ga Hee Kim, Ji Eun Won, Yeongseon Byeon, Min Gi Kim, Tae In Wi, Jae Myeong Lee, Yun-Yong Park, Jeong-Won Lee, Tae Heung Kang, In Duk Jung, Byung Cheol Shin, Hyung Jun Ahn, Young Joo Lee, Anil K Sood, Hee Dong Han, Yeong-Min Park
Angiogenesis plays an essential role in the growth and metastasis of tumor cells, and the modulation of angiogenesis can be an effective approach for cancer therapy. We focused on silencing the angiogenic gene PLXDC1 as an important factor for anti-angiogenesis tumor therapy. Herein, we developed PLXDC1 small interfering siRNA (siRNA)-incorporated chitosan nanoparticle (CH-NP/siRNA) coated with hyaluronic acid (HA) to target the CD44 receptor on tumor endothelial cells. This study aimed to improve targeted delivery and enhance therapeutic efficacy for tumor anti-angiogenesis...
November 2018: Drug Delivery
Yuanwei Liang, Wei Huang, Delong Zeng, Xiaoting Huang, Leung Chan, Chaoming Mei, Pengju Feng, Choon-Hong Tan, Tianfeng Chen
Chemical drug design based on the biochemical characteristics of cancer cells has become an important strategy for discovery of novel anticancer drugs to enhance the cancer targeting effects and biocompatibility, and decrease toxic side effects. Camptothecin (CPT) demonstrated strong anticancer activity in clinical trials but also notorious adverse effects. In this study, we presented a smart targeted delivery system (Biotin-ss-CPT) that consists of cancer-targeted moiety (biotin), a cleavable disulfide linker (S-S bond) and the active drug CPT...
November 2018: Drug Delivery
Taehoon Sim, Jae Eun Kim, Ngoc Ha Hoang, Jin Kook Kang, Chaemin Lim, Dong Shik Kim, Eun Seong Lee, Yu Seok Youn, Han-Gon Choi, Hyo-Kyung Han, Kwon-Yeon Weon, Kyung Taek Oh
Docetaxel (DTX)-loaded polymeric micelles (DTBM) were formulated using the triblock copolymer, poly(ethylene glycol)-polylactide-poly(ethylene glycol) (PEG-PLA-PEG), to comprehensively study their pharmaceutical application as anticancer nanomedicine. DTBM showed a stable formulation of anticancer nanomedicine that could be reconstituted after lyophilization (DTBM-R) in the presence of PEG 2000 and D-mannitol (Man) as surfactant and protectant, respectively. DTBM-R showed a particle size less than 150 nm and greater than 90% of DTX recovery after reconstitution...
November 2018: Drug Delivery
Jiemin Wang, Xiongbin Hu, Daxiong Xiang
In the past 40 years, the nanoparticle drug delivery system for tumor peptide vaccines has been widely studied which also reached a splendid result. Nanomaterial can enhance the targeting of vaccines, help vaccines enter the cells and trigger immune response by themselves. They also help in increasing cellular uptake, improving permeability and efficacy. Currently, several categories of nanopreparation, such as liposome, polymeric micelle, polymeric nanoparticle, gold nanoparticle and so on, are proved that they are appropriate for peptide vaccines...
November 2018: Drug Delivery
He-Lin Xu, Zi-Liang Fan, De-Li ZhuGe, Meng-Qi Tong, Bi-Xin Shen, Meng-Ting Lin, Qun-Yan Zhu, Bing-Hui Jin, Yasin Sohawon, Qing Yao, Ying-Zheng Zhao
Currently, combination drug therapy is one of the most effective approaches to glioma treatment. However, due to the inherent dissimilar pharmacokinetics of individual drugs and blood brain barriers, it was difficult for the concomitant drugs to simultaneously be delivered to glioma in an optimal dose ratio manner. Herein, a cationic micellar core (Cur-M) was first prepared from d-α-tocopherol-grafted-ε-polylysine polymer to encapsulate the hydrophobic curcumin, followed by dopamine-modified-poly-γ-glutamic acid polymer further deposited on its surface as a anion shell through pH-sensitive linkage to encapsulate the hydrophilic doxorubicin (DOX) hydrochloride...
November 2018: Drug Delivery
Yan Xing, Jingyi Zhu, Lingzhou Zhao, Zhijuan Xiong, Yujie Li, San Wu, Gitasha Chand, Xiangyang Shi, Jinhua Zhao
Non-invasive imaging of apoptosis in tumors induced by chemotherapy is of great value in the evaluation of therapeutic efficiency. In this study, we report the synthesis, characterization, and utilization of radionuclide technetium-99m (99m Tc)-labeled dendrimer-entrapped gold nanoparticles (Au DENPs) for targeted SPECT/CT imaging of chemotherapy-induced tumor apoptosis. Generation five poly(amidoamine) (PAMAM) dendrimers (G5.NH2 ) were sequentially conjugated with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), polyethylene glycol (PEG) modified duramycin, PEG monomethyl ether, and fluorescein isothiocyanate (FI) to form the multifunctional dendrimers, which were then utilized as templates to entrap gold nanoparticles...
November 2018: Drug Delivery
Hongjie Mu, Yiyun Wang, Yongchao Chu, Ying Jiang, Hongchen Hua, Liuxiang Chu, Kaili Wang, Aiping Wang, Wanhui Liu, Youxin Li, Fenghua Fu, Kaoxiang Sun
Bevacizumab is an anti-vascular endothelial growth factor drug that can be used to treat choroidal neovascularization (CNV). Bevacizumab-loaded multivesicular liposomes (Bev-MVLs) have been designed and developed to increase the intravitreal retention time of bevacizumab and reduce the number of injection times. In this study, Bev-MVLs with high encapsulation efficiency were prepared by double emulsification technique, and antibody activity was determined. The results revealed that 10% of human serum albumin (HSA) could preserve the activity of bevacizumab...
November 2018: Drug Delivery
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"