Add like
Add dislike
Add to saved papers

Paradoxical Increase in Body Mass Induced by Beta-Guanidinopropionic Acid in Juvenile Spontaneously Hypertensive Rats.

Curēus 2021 November
Background The adenosine triphosphate (ATP) regenerating enzyme creatine kinase (CK) is intimately involved in blood pressure generation. Consequently, the creatine transporter and CK inhibitor beta-guanidinopropionic acid (GPA) successfully reduced blood pressure in 16-week-old spontaneously hypertensive rats (SHR), but GPA may cause growth retardation in juvenile mammals. This report considers a serendipity observation of paradoxical growth increase after using GPA to prevent hypertension in three-week-old SHR. Methods Implementing the "Animal Research: Reporting of In Vivo Experiments" (ARRIVE) guideline, male, three-week-old spontaneously hypertensive rats (N=22) were randomly assigned to standard soy-based (creatine-free) chow with GPA 0.1% vs control chow during four weeks (primary, t=4w) or six weeks of treatment (t=6w). Blood pressure measured by the tail-cuff method was the main outcome. Other outcomes included body mass and contractility characteristics of isolated arteries. Results  Body mass at baseline was 28.4 (SE 0.71) g (n=22). With similar food intake/100 gram animal in both groups, GPA-treated rats (n=11) developed a strikingly larger body size and mass: t=4w, GPA 110.4 g (3.7) vs controls (n=11) 65.0 g (4.8) (+69.8%; p<0.001); t=6w, GPA 154.3 (4.7) vs controls 68.0 (4.7) g. There were no significant differences in cardiovascular parameters including blood pressure. Discussion An unexpected increase in body mass and size without concurrent blood pressure increase was observed in juvenile SHR on GPA vs control soy-based chow. It is speculated that the partial creatine agonist activity of GPA contributed to these effects. Further studies are needed to confirm these findings and better understand the impact of modulating energy metabolism in juvenile hypertension-prone mammals.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app