Add like
Add dislike
Add to saved papers

Polygonum cuspidatum Extract Exerts Antihyperlipidemic Effects by Regulation of PI3K/AKT/FOXO3 Signaling Pathway.

Polygonum cuspidatum (PC) has been reported to exert a potent antihyperlipidemic effect. However, its mechanisms of action and active ingredients remain elusive and require further research. In this study, we first conducted in vivo experiments to validate that Polygonum cuspidatum extract (PCE) could ameliorate the blood lipid level in hyperlipidemia model rats. Then, ultrahigh performance liquid chromatography coupled with Q-Exactive MS/MS (UPLC-QE-MS/MS) was applied to verify its 12 main active ingredients. The pharmacophore matching model was employed to predict the target point of the active ingredient, and 27 overlapping genes were identified via database and literature mining. String online database and Cytoscape software were utilized to construct a Protein-Protein Interaction (PPI) network, followed by function annotation analysis and pathway enrichment analysis. The results showed that the PI3K/AKT signaling pathway and its downstream FOXO3/ER α factors were significantly enriched. Furthermore, in vitro experiments were performed to determine the lipid content and oxidative stress (OS) indicators in OA-induced HepG2 cells, and immunofluorescence and western blotting analysis were carried out to analyze the effects of PCE on related proteins. Our experimental results show that the mechanism of antihyperlipidemic action of PCE is related to the activation of the PI3K/AKT signaling pathway and its downstream FOXO3/ER α factors, and polydatin and resveratrol are the main active ingredients in PCE that exert antihyperlipidemic effects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app