Add like
Add dislike
Add to saved papers

Investigation of Physical Properties of Disodium Etidronate Tetrahydrate and Application of Phosphorus K-Edge X-Ray Absorption Near-Edge Structure Spectroscopy.

Pharmaceutical Research 2021 December 18
PURPOSE: Disodium etidronate is a bisphosphonate, compounds that are widely used in the treatment of bone disorders such as osteoporosis and Paget's disease. We investigated the physical properties of disodium etidronate tetrahydrate crystal, form I.

METHODS: We used X-ray powder diffraction (XRPD), thermal analysis, dynamic vapor sorption (DVS), X-ray single crystal structure analysis, and phosphorus K-edge X-ray absorption near-edge structure (XANES) spectroscopy for the first time.

RESULTS: XRPD and thermal analyses demonstrated that form I was dehydrated and transformed to an amorphous form, to a crystalline form II, and finally to a form III by heating. DVS measurements revealed that the amorphous form, form II, and form III were rehydrated to form I by humidification, and form I was stable even at 0% relative humidity. These results indicate that form I is the most stable solid-state under ambient conditions and is suitable as an API for manufacture in solid formulations. The phosphorus K-edge XANES spectra differed among form I, the amorphous form, and form II, which may be ascribed to the difference in the coordinate bond schemes between the phosphate moieties and sodium ions. The results demonstrated that the phosphorus K-edge XANES spectroscopy could be applied to the identification or the discrimination of crystal forms of the APIs containing phosphate moieties.

CONCLUSIONS: Acquired information about physical properties are crucial for manufacturing of solid formulations of disodium etidronate. XANES spectroscopy is a promising alternative method for evaluating the solid-state forms of APIs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app