Journal Article
Review
Add like
Add dislike
Add to saved papers

Structure driven compound optimization in targeted protein degradation.

Small molecule induced protein degradation has created tremendous excitement in drug discovery within recent years. Not being confined to target inhibition and being able to remove disease-causing protein targets via engagement and subsequent ubiquitination has provided scientists with a powerful tool to expand the druggable space. At the center of this approach sits the ternary complex formed between an E3 ubiquitin ligase, the small molecule degrader, and the target protein. A productive ternary complex is pivotal for a ubiquitin to be transferred to a surface lysine of the target protein resulting in poly-ubiquitination which enables recognition and finally degradation by the proteasome. As understanding the ternary complex means understanding the degradation process, many efforts are put into obtaining structural information of the ternary complex and getting a snapshot of the underlying conformations and molecular contacts. Locking this transient trimeric intermediate in a crystalline state has proven to be very demanding but the obtained results have tremendously improved our understanding of small molecule degraders. This review discusses target protein degradation from a structural perspective and highlights the evolution of certain degraders based on the obtained structural insights.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app