Add like
Add dislike
Add to saved papers

A 10-gene biosignature of tuberculosis treatment monitoring and treatment outcome prediction.

Tuberculosis 2021 October 9
The clinical utility of blood transcriptomic biosignatures for the treatment monitoring and outcome prediction of tuberculosis (TB) remains limited. In this study, we aimed to discover and validate biomarkers for pulmonary TB treatment monitoring and outcome prediction based on kinetic responses of gene expression during treatment. In particular, differentially expressed genes (DEGs) were identified by time-series comparison. Subsequently, DEGs with the monotonic expression alterations during the treatment were selected. Ten consistently down-regulated genes (CD274, KIF1B, IL15, TLR1, TLR5, FCGR1A, GBP1, NOD2, GBP2, EGF) exhibited significant potential in treatment monitoring, demonstrated via biological and technical validation. Additionally, the biosignature showed potential in predicting the cured versus relapsed patients. Furthermore, the biosignature could be utilized for TB diagnosis, latent tuberculosis infection/active TB differential diagnosis, and risk of progression to active TB. Benchmarking analysis of the 10-gene biosignature with other biosignatures showed equivalent performance in tested data sets. In conclusion, we established a 10-gene transcriptomic biosignature that represents the kinetic responses of TB treatment. Subsequent studies are warranted to validate, refine and translate the biosignature into a precise assay to assist clinical decisions in a broad spectrum of TB management.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app