Add like
Add dislike
Add to saved papers

Efficient Drug Delivery into Skin Using a Biphasic Dissolvable Microneedle Patch with Water-Insoluble Backing.

Dissolvable microneedle patches (MNPs) enable simplified delivery of therapeutics via the skin. However, most dissolvable MNPs do not deliver their full drug loading to the skin because only some of the drug is localized in the microneedles (MNs), and the rest remains adhered to the patch backing after removal from the skin. In this work, biphasic dissolvable MNPs are developed by mounting water-soluble MNs on a water-insoluble backing layer. These MNPs enable the drug to be contained in the MNs without migrating into the patch backing due to the inability of the drugs to partition into the hydrophobic backing materials during MNP fabrication. In addition, the insoluble backing is poorly wetted upon MN dissolution in the skin, which significantly reduces drug residue on the MNP backing surface after application. These effects enable a drug delivery efficiency of >90% from the MNPs into the skin 5 min after application. This study shows that the biphasic dissolvable MNPs can facilitate efficient drug delivery to the skin, which can improve the accuracy of drug dosing and reduce drug wastage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app