Add like
Add dislike
Add to saved papers

Ethyl 2-[2,3,4-Trimethoxy-6-(1-Octanoyl)Phenyl] Acetate (TMPA) Ameliorates Lipid Accumulation by Disturbing the Combination of LKB1 with Nur77 and Activating the AMPK Pathway in HepG2 Cells and Mice Primary Hepatocytes.

Background: The AMP-activated protein kinase alpha (AMPKα) pathway has widely been considered a key factor in energy metabolism. Ethyl 2-[2,3,4-trimethoxy-6-(1-octanoyl)phenyl] acetate (TMPA) is a novel AMPK agonist, which influences the stability of Nuclear Receptor Subfamily 4, Group A, Member 1 (Nur77)-serine-threonine kinase 11 (LKB1) in the nucleus. A recent study has determined that TMPA can ameliorate the reduction of insulin resistance in type II db/db mice. However, the role of TMPA in hepatocyte lipid metabolism has not been elucidated.

Objective: To investigate whether TMPA could ameliorate liver lipid accumulation under the stimulation of free fatty acids (FFAs) in vitro.

Methods: We evaluated differences of Nur77 and AMPK pathway in mice fed a high-fat diet and those fed a normal diet. In vitro, TMPA was added to HepG2 cells and primary hepatocytes before FFAs stimulation. Oil red O staining, Nile red staining were used to evaluate lipid deposition. Western blot and immunofluorescence were used to quantify related proteins.

Results: Nur77, AMPKα, LKB1, 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), acetyl-CoA carboxylase phosphorylation (p-ACC), and carnitine palmitoyltransferase 1 (CPT1A) showed significant differences in vivo. Under the intervention of TMPA, HepG2 cells and primary hepatocytes showed considerable amelioration of lipid deposition and improved the expression of phosphorylated (p)-AMPKα (p-AMPKα), p-LKB1, p-ACC, and CPT1A. Furthermore, Western blotting and immunofluorescence studies indicated that LKB1 dramatically increased expression in the cytoplasm but decreased in the nucleus. Further, AMPKα phosphorylation (p-AMPKα) also showed a higher expression in cytoplasm instead of the nucleus.

Conclusion: TMPA ameliorated lipid accumulation by influencing the stability of Nur77-LKB1 in vitro.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app