Add like
Add dislike
Add to saved papers

Time Course of Homeostatic Structural Plasticity in Response to Optogenetic Stimulation in Mouse Anterior Cingulate Cortex.

Cerebral Cortex 2021 October 6
Plasticity is the mechanistic basis of development, aging, learning, and memory, both in healthy and pathological brains. Structural plasticity is rarely accounted for in computational network models due to a lack of insight into the underlying neuronal mechanisms and processes. Little is known about how the rewiring of networks is dynamically regulated. To inform such models, we characterized the time course of neural activity, the expression of synaptic proteins, and neural morphology employing an in vivo optogenetic mouse model. We stimulated pyramidal neurons in the anterior cingulate cortex of mice and harvested their brains at 1.5 h, 24 h, and $48\,\mathrm{h}$ after stimulation. Stimulus-induced cortical hyperactivity persisted up to 1.5 h and decayed to baseline after $24\,\mathrm{h}$ indicated by c-Fos expression. The synaptic proteins VGLUT1 and PSD-95, in contrast, were upregulated at $24\,\mathrm{h}$ and downregulated at $48\,\mathrm{h}$, respectively. Spine density and spine head volume were also increased at $24\,\mathrm{h}$ and decreased at $48\,\mathrm{h}$. This specific sequence of events reflects a continuous joint evolution of activity and connectivity that is characteristic of the model of homeostatic structural plasticity. Our computer simulations thus corroborate the observed empirical evidence from our animal experiments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app