Add like
Add dislike
Add to saved papers

In silico bimolecular characterization of anticancer phytochemicals from Fagonia indica.

The in silico molecular dynamics and structure-based site-specific drug design of indigenous plant biomolecules and selected proteins have remarkable potential for cancer therapy. A set of five proteins included for this research were epidermal growth factor protein (PDB ID; 1M17), crystal structure of mutated EGFR kinase (PDB ID; 2EB3), crystal structure of Bcl-xl (PDB ID; 2YXJ), apoptosis regulator protein MCL-1 BH3 (PDB ID; 3MK8) and apoptosis proteins (PDB ID; 5C3H). The present study on in silico investigation of fifteen indigenous medicinal plants were selected there one hundred thirty four ligands available literature were docked against five proteins involved in carcinogenesis. The highest scoring in silico plant, Fagonia indica was subjected to in vitro cytotoxic effects on HCT116, HepG-2 and HeLa human carcinoma cell lines. Molecular dynamics showed best ligand-protein inhibition interaction between Coumarin-2xyj and Kaempferol-2eb3 with promising binding affinities. Whereas, on HeLa human cervical cancer cell line IC50 was 28.3±0.102/ml. Fagonia indica could be potential source from natural products that have cytotoxic properties against cervical cancer cells by blocking mutant epidermal growth factor tyrosine or peroxisome proliferators activated receptor proteins.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app