Add like
Add dislike
Add to saved papers

Reactivity of 5-(Alkynyl)dibenzothiophenium Salts: Synthesis of Diynes, Vinyl Sulfones, and Phenanthrenes.

The reactivity of 5-(alkynyl)dibenzothiophenium salts 1 is explored in the presence of different nucleophiles, dienes, and under photochemical conditions. Reaction with lithium acetylides affords diynes in moderate yields; while depending on the substitution pattern, the reaction with sulfinates delivers either the alkyne transfer products, alkynyl sulfones, or β-(sulfonium) vinyl sulfones through addition to the C-C triple bond. Similar behavior is observed when tosylamines are used as nucleophiles. Salts of general formula 1 also react with dienes to render the corresponding Diels-Alder cycloadducts. The vinyl sulfonium salts obtained by these routes further react with nucleophiles through a Michael addition, dibenzothiophene elimination sequence. Alternatively, they also engage in photoinduced radical cyclizations to produce substituted phenanthrenes. Attempts to use this specific addition/radical cyclization sequence for the construction of the 6 a ,7-dehydroaporphine skeleton present in several families of alkaloids are also described.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app