Journal Article
Review
Add like
Add dislike
Add to saved papers

The Impact of Monoclonal Antibodies on Airway Smooth Muscle Contractility in Asthma: A Systematic Review.

Biomedicines 2021 September 22
Airway hyperresponsiveness (AHR) represents a central pathophysiological hallmark of asthma, with airway smooth muscle (ASM) being the effector tissue implicated in the onset of AHR. ASM also exerts pro-inflammatory and immunomodulatory actions, by secreting a wide range of cytokines and chemokines. In asthma pathogenesis, the overexpression of several type 2 inflammatory mediators including IgE, IL-4, IL-5, IL-13, and TSLP has been associated with ASM hyperreactivity, all of which can be targeted by humanized monoclonal antibodies (mAbs). Therefore, the aim of this review was to systematically assess evidence across the literature on mAbs for the treatment of asthma with respect to their impact on the ASM contractile tone. Omalizumab, mepolizumab, benralizumab, dupilumab, and tezepelumab were found to be effective in modulating the contractility of the ASM and preventing the AHR, but no available studies concerning the impact of reslizumab on the ASM were identified from the literature search. Omalizumab, dupilumab, and tezepelumab can directly modulate the ASM in asthma, by specifically blocking the interaction between IgE, IL-4, and TSLP, and their receptors are located on the surface of ASM cells. Conversely, mepolizumab and benralizumab have prevalently indirect impacts against AHR by targeting eosinophils and other immunomodulatory effector cells promoting inflammatory processes. AHR has been suggested as the main treatable trait towards precision medicine in patients suffering from eosinophilic asthma, therefore, well-designed head-to-head trials are needed to compare the efficacy of those mAbs that directly target ASM contractility specifically against the AHR in severe asthma, namely omalizumab, dupilumab, and tezepelumab.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app