Add like
Add dislike
Add to saved papers

Synthesis and Characterization of a Low-Molecular-Weight Novolac Epoxy Derived from Lignin-Inspired Phenolics.

ACS Omega 2021 September 22
The need for renewable polymers capable of replacing their petrochemical counterparts continues to grow as sustainability concerns rise. Bisguaiacol (BG), a bioinspired alternative to bisphenol-A (BPA), has been synthesized using vanillyl alcohol and guaiacol via an electrophilic aromatic condensation. Purification provides both BG and an oligomeric coproduct with a consistent number average molecular weight and dispersity of ∼650 Da and ∼1.00, respectively. This coproduct has been well characterized as a low-molecular-weight novolac averaging five hydroxyls per molecule and was transformed into an epoxy resin suitable for use in thermosetting resins. The bioinspired thermoset produced in this work, consisting of the epoxidized coproduct and an amine curing agent (Epikure W), exhibited a glass transition temperature over 100 °C and glassy storage modulus value of ∼3 GPa at 25 °C. When compared to a commercial cresol novolac epoxy, the cured epoxidized coproduct resin shows comparable thermal and thermomechanical properties. When compared to a commercial BPA-based resin, the cured epoxidized coproduct resin shows improved mode 1 fracture values of 1.34 J m1/2 ( K 1C ) and 448.16 J/m2 ( G 1C ). By utilizing the coproduct strategically, the overall production of BG has the potential to become more economically feasible.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app