Add like
Add dislike
Add to saved papers

Cross-Correlated Fractal Components of H-wave Amplitude Fluctuations in Medial Gastrocnemius and Soleus Muscles.

Neuroscience Letters 2021 September 24
The time series of the H-wave amplitude in soleus muscle (SOL) shows fractal (long-range) correlation, which is attributed to input from supraspinal centers. However, whether such long-range power-law correlated input also contributes to the synergistic muscles remains unclear. The purpose of this study was therefore to examine the correlation in the fractal components of H-wave amplitude fluctuations between the synergistic muscles used for plantar flexion, i.e., the medial head of the gastrocnemius muscle (MG) and SOL. In eight young male participants, consecutive H-reflexes were recorded almost simultaneously from the MG and SOL at a stimulation frequency of 0.5 Hz for 30 min. We performed detrending moving-average cross-correlation analysis (DMCA) for each of the H- and M-wave amplitude time series between MG and SOL to assess the existence of a common noise input contributing to these long-range correlations. The cross-correlation coefficient ρDMCA (-1 to 1) was calculated to quantify the strength of the correlation between two different time series. The results indicated a significant long-range power-law correlation between H-wave amplitudes in MG and SOL (ρDMCA: 0.50 (0.22) and 0.22 (0.17), mean (standard deviation) for the original and randomly shuffled surrogate data, respectively, P < 0.05). This was not the case for M-wave amplitudes (ρDMCA: 0.29 (0.23) and 0.20 (0.15), P > 0.05). We conclude that there is a common noise input governing these synergistic muscles, possibly due to supraspinal origin, causing long-range power-law correlations in monosynaptic reflexes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app