Add like
Add dislike
Add to saved papers

Structural requirements of flavonoids for the selective inhibition of α-amylase versus α-glucosidase.

Food Chemistry 2021 August 31
In the present study, 14 structurally unique flavonoids were screened to systematically investigate structural requirements for selectively inhibiting human α-amylase versus α-glucosidase to obtain a slow but complete starch digestion for health benefit. The selective inhibition property of three flavonoids chosen against the two classes of starch digestive enzymes was confirmed through various analytical techniques - in vitro inhibition assay, fluorescence quenching, kinetic study, and molecular modeling. Considering the chemical structure of flavonoids, the double bond between C2 and C3 and OH groups at A5 and B3 are critical for the inhibition of α-amylase allowing flavonoids to lie parallel on the α-amylase catalytic active site, whereas the OH groups at B3 and C3 are important for α-glucosidase inhibition causing B-ring specific entry into the catalytic active site of α-glucosidase. Our findings provide insights into how to apply flavonoids to effectively control digestion rate for improving physiological responses.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app