Add like
Add dislike
Add to saved papers

Increased expression of secreted protein acidic and rich in cysteine and tissue inhibitor of metalloproteinase-3 in epidermotropic melanoma metastasis.

Primary cutaneous melanoma generally arises in the epidermis, followed by invasion into the dermis. Although infrequent, invasive melanoma cells can, alternatively, migrate to the intraepidermal area and form epidermotropic melanoma metastasis (EMM). In this study, we focused on this unique manner of metastasis. To identify the key molecules which affect EMM, gene expression in EMM was compared with that in common skin metastasis (CSM). Polymerase chain reaction (PCR) analysis was performed for genes affecting the extracellular matrix, cellular adhesion, and tumor metastasis on three EMM and three CSM samples as an initial screening. For molecules showing altered expression in the EMM, expression levels were further verified using real-time quantitative PCR (qPCR) and immunohistochemistry. Five molecules showed an expression difference in the initial screening. Among these, secreted protein acidic and rich in cysteine (SPARC) was preferentially expressed in EMM (p = 0.01) by real-time qPCR. Another candidate molecule, tissue inhibitor of metalloproteinase-3 (TIMP3), was not statistically significant (p = 0.07), but showed the tendency of higher expression. These results correlated negatively to expression of N-cadherin and β-catenin. The upregulation of SPARC and TIMP3 may disrupt the continuity of the canonical Wnt pathway. This pathway regulates adhesion activity of melanoma cells to localize within the dermis, which consequently promotes EMM. Our study highlights the potential role of SPARC and TIMP3 as key molecules in EMM, and analysis of EMM may contribute for understanding melanoma invasion between the epidermis and the dermis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app