Add like
Add dislike
Add to saved papers

Consideration of Metabolite Efflux in Radiolabelled Choline Kinetics.

Pharmaceutics 2021 August 13
Hypoxia is a complex microenvironmental condition known to regulate choline kinase α (CHKA) activity and choline transport through transcription factor hypoxia-inducible factor-1α (HIF-1α) and, therefore, may confound the uptake of choline radiotracer [18 F]fluoromethyl-[1,2-2 H4 ]-choline ([18 F]-D4-FCH). The aim of this study was to investigate how hypoxia affects the choline radiotracer dynamics. Three underlying mechanisms by which hypoxia could potentially alter the uptake of the choline radiotracer, [18 F]-D4-FCH, were investigated: 18 F-D4-FCH import, CHKA phosphorylation activity, and the efflux of [18 F]-D4-FCH and its phosphorylated product [18 F]-D4-FCHP. The effects of hypoxia on [18 F]-D4-FCH uptake were studied in CHKA-overexpressing cell lines of prostate cancer, PC-3, and breast cancer MDA-MB-231 cells. The mechanisms of radiotracer efflux were assessed by the cell uptake and immunofluorescence in vitro and examined in vivo ( n = 24). The mathematical modelling methodology was further developed to verify the efflux hypothesis using [18 F]-D4-FCH dynamic PET scans from non-small cell lung cancer (NSCLC) patients ( n = 17). We report a novel finding involving the export of phosphorylated [18 F]-D4-FCH and [18 F]-D4-FCHP via HIF-1α-responsive efflux transporters, including ABCB4, when the HIF-1α level is augmented. This is supported by a graphical analysis of human data with a compartmental model (M2T6k + k5 ) that accounts for the efflux. Hypoxia/HIF-1α increases the efflux of phosphorylated radiolabelled choline species, thus supporting the consideration of efflux in the modelling of radiotracer dynamics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app