Add like
Add dislike
Add to saved papers

Measuring NQO1 Bioactivation Using [ 2 H 7 ]Glucose.

Cancers 2021 August 20
Treatment of cancers with β-lapachone causes NAD(P)H: quinone oxidoreductase 1 (NQO1) to generate an unstable hydroquinone that regenerates itself in a futile cycle while producing reactive oxygen species (ROS) in the form of superoxide and subsequently hydrogen peroxide. Rapid accumulation of ROS damages DNA, hyperactivates poly-ADP-ribose polymerase-I, causes massive depletion of NAD+ /ATP, and hampers glycolysis. Cells overexpressing NQO1 subsequently die rapidly through an NAD+ -keresis mechanism. Assessing changes in glycolytic rates caused by NQO1 bioactivation would provide a means of assessing treatment efficacy, potentially lowering the chemotherapeutic dosage, and reducing off-target toxicities. NQO1-mediated changes in glycolytic flux were readily detected in A549 (lung), MiaPaCa2 (pancreatic), and HCT-116 (colon) cancer cell lines by 2 H-NMR after administration of [2 H7 ]glucose. The deuterated metabolic products 2 H-lactate and HDO were quantified, and linear relationships with glucose consumption for both products were observed. The higher concentration of HDO compared to 2 H-lactate allows for more sensitive measurement of the glycolytic flux in cancer. Gas chromatography-mass spectrometry analysis agreed with the NMR results and confirmed downregulated energy metabolism in NQO1+ cells after β-lapachone treatment. The demonstrated method is ideal for measuring glycolytic rates, the effects of chemotherapeutics that target glycolysis, and has the potential for in vivo translation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app